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12.1 Let us consider the following initial value problem on (R"™! 5) (with (¢,2!,..., 2") denoting
the usual Cartesian coordinate system):

1
Vo = o, Otblio = 1, for i, v € C(RY). (1)

{Dw = (9",

(a) Show that, if the above initial value problem has a smooth solution on a domain of the

form {=T7 < t < Ty}, then it is unique. (Hint: Consider the equation satisfied by the

difference w = v — @) of two solutions; recast it as an equation which is linear in terms
of w and apply an energy estimate.

(b) Show that the initial value problem (1) satisfies the domain of dependence property: If
(v0,%1) = (0,0) on a ball By, g = {x € R": |z —z,| < R}, then ¢ vanishes on the domain
of dependence of By, g, i.e. on the diamond domain Q = {(¢,z) : |z — x| < R—t|} (you
can assume that any solution, if it exists, is sufficiently smooth; this is something that we
will prove in class).

(c¢) Show that for any initial data of the form (g, 71) = (0, c), where ¢ # 0 is a constant, the
corresponding solution of (1) blows up in finite time (i.e. imsup, ,p- || (t, )| poo(rn) = +00
for some T' € R\ 0) (Hint: Observe that, for a solution which is constant in x, the above
equation becomes a second order ODE in terms of t).

(d) In the case n > 3, show that, for any e > 0, there exist compactly supported initial data
(to, 1) with ||1ol| g1 + ||11]]z2 < € which blow up in finite time. As a result, small initial
energy is not enough to guarantee that (1) has a solution which exists globally in time;
this is related to the fact that (1) is supercritical with respect to the energy norm. (Hint:
Consider the initial data from part (c¢) and cut them off in a ball of suitable radius, using

the domain of dependence property to deduce the behaviour of the solution on the domain
of dependence of that ball.)

Remark. In the case where n = 3 (that is, the physical space dimension), it was shown by
Fritz John that every smooth and compactly supported initial data set (g, 1) for (1) that
doesn’t vanish identically gives rise to a solution that blows up in finite time.

12.2 In this exercise, we will establish Hardy’s inequality. Like Poincare’s inequality, this inequality
is used to control lower order norms of a function f in terms of norms of higher derivatives,
albeit in unbounded domains.

(a) Let f:[0,4+00) = R be a C'! function. Show that, for any a > —1, there exists a constant
C, > 0 depending only on a such that

+o0 +oo
[ wlrar<cu( [ e P do s timsup(ae 1 7(a))).
0 0

T—-+00
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In particular, if f is compactly supported, we have

+o0 +o0
/ 2| f|?dr < Ca/ 2| f | da.
0 0

dx \ a+1
you might want to use a Cauchy—Schwarz inequality at some point.)

(Hint: Starting from the left hand side, write x* = 1<Lx“+1> and integrate by parts;

Let f : R® — R be a C' function. Show that, for any a > —n, there exists a constant
Con > 0 depending only on a,n such that

2| | f|? dv < Ca7n</ 2|2V f1? do + limsup/ R f)? da).
Rn Rn |z|=R

R—+o00

(Hint: Use polar coordinates.

Let 1 be a smooth solution of the wave equation
O, =0
on (R",n), n > 3, with smooth and compactly supported initial data (ig,?,) at ¢t = 0.

Show that ]
sup [ o0l dn < CElu0) < +oc
t

Ter Ji—r |7]?
for some constant C' > 0 depending only on the dimension n, where E[](0) is the initial
energy of 1. Compare the above bound with Exercise 10.2.b.

12.3 In this exercise, we will show that solutions of the standard wave equation on Minkowski space-
time decay polynomially fast towards timelike infinity. We will restrict ourselves to (R3*1, n),
even though similar arguments can be applied to the case of R"*! for any n > 3. In what
follows, we will denote with ¢ a given solution of

0,6 =0

on R**! emanating from smooth and compactly supported initial data at t = 0. We will denote
by r = |z| the usual spatial radius function, and by

u=t—r, v=t+r

the usual double null coordinate functions.

(a) Show that, in the polar coordinates (t,7,w) on R¥*1\ {r = 0} ~ R x (0, +00) x 5%, the

wave equation can be reexpressed in terms of r¢ as

~03(r6) + 32(r) + 5 A () =,
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where ds2 is the usual Laplace-Beltrami operator on the unit sphere (5%, gs2); in the
standard (6, ¢) coordinates on G2, it takes the form

Ag2 f = Si%ﬁg(sinﬁﬁgf) + L 0 f.

0 sin?6 %

In the (u,v,w) coordinate system, we have
1
—40,0,(ro) + ﬁAg2 (r¢) = 0. (2)

Let us now switch to the (u,v,w) coordinate system. Show the following energy bounds
along the leaves of the foliation {u = const}: For any 0 < 71 < 7o,

/u:T (4!8v(r¢)|2 + %Ww(ms) §SQ> dvdw < /

uU="T1

(40,00 + Vo)L, ) dud (3
and

/u:T <4|av(7’¢)|2—|—ri2|vw(7“¢) 352) dvdw g/

t=0

(10:r6) P+10, ()45 Vo), ) s,

where ]VW(T’(b)\;SQ denotes the norm of the spherical gradient, evaluated with respect to
the unit metric on the sphere, while dw denotes the associated volume form on the unit
sphere. The above is of course nothing more than the usual energy inequality, applied to
domains bounded by the null cones.

(Hint: Multiply (2) with Oy(r¢) = (0, + 0,)(rd) and integrate by parts over appropriate
domains with respect to the volume form dudvdw. Note that you might have to truncate
your domains by intersecting with {v <V} and sending V — +00.)

For any p € [0, 2], using r?0,(r¢) as a multiplier for (2), show that, for any 0 < 71 < 72:

/ 7|0, (r¢)|* dvdw + / rp1 <|6U(7°¢)|2 + 772 |V,(re) !2152> dudvdw (4)
U=To T1<uLm™

< / 210, (r¢)|? dvdw.

and
/ 710y (1¢)|* dvdw < C/
u=0 t=0
for some absolute constant C' > 0 (i.e. independent of ¢).

r(10.000) 2 + 172 Vu(ro) 2, ) drdw

Show that if f : [0,4+00) — [0, +00) is a continuous function satisfying

+00
ft)dt < C

0

then there exists a sequence of points t,, — 400 with t,1 € [2t,,4t,] (we will call such a

sequence dyadic) such that

10C

f(tn) < .
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*(e)

Starting from (4) for p = 2 and using part (c), show that there exists a dyadic sequence
T, and some absolute constant C' > 0, such that

[ raopats < [ R (00or w00, drd

Applying again (4) but this time for p = 1 on the intervals {7,, < u < 7,41, show that, for
some 7}, € [Ty, Tnt1):

/_ (|8U(rgb)|2+r_2|vw(rq5) dvdw —/ |8 (ro)|* +r~3|V,, (ngﬁ) )drdw

n

for some absolute constant C’ > 0.

Using the energy bound (3), deduce that, for any 7 > 0:

/_ (|8U(T¢)|2+T_2\Vw(r¢) dvdw —/ |8 (r¢)|* +r2|V,, (r(b) )drdw

for some absolute constant C” > 0. In particular, the energy flux through the cones
{u =7} decays like 772 as 7 — +o0.

By commuting the wave equation with Cartesian derivatives, deduce an analogous decay
estimate for higher order energy fluxes of ¢. Applying the Sobolev inequality, deduce that

o(u,v,w) Su™t and  re(u,v,w) SuTE,

with the constant implicit in the < notation depending only on the initial data at ¢t = 0.
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