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12.1 Let us consider the following initial value problem on (Rn+1, η) (with (t, x1, . . . , xn) denoting
the usual Cartesian coordinate system):{

□ηψ = −(∂tψ)
2,

ψ|t=0 = ψ0, ∂tψ|t=0 = ψ1, forψ0, ψ1 ∈ C∞(Rn).
(1)

(a) Show that, if the above initial value problem has a smooth solution on a domain of the
form {−T1 ⩽ t ⩽ T2}, then it is unique. (Hint: Consider the equation satis�ed by the
di�erence w = ψ(1)−ψ(2) of two solutions; recast it as an equation which is linear in terms
of w and apply an energy estimate.

(b) Show that the initial value problem (1) satis�es the domain of dependence property: If
(ψ0, ψ1) = (0, 0) on a ball Bx0,R =

{
x ∈ R

n : |x−x0| ⩽ R
}
, then ψ vanishes on the domain

of dependence of Bx0,R, i.e. on the diamond domain Ω =
{
(t, x) : |x− x0| ⩽ R− |t|

}
(you

can assume that any solution, if it exists, is su�ciently smooth; this is something that we
will prove in class).

(c) Show that for any initial data of the form (ψ0, ψ1) = (0, c), where c ̸= 0 is a constant, the
corresponding solution of (1) blows up in �nite time (i.e. lim supt→T− ∥ψ(t, ·)∥L∞(Rn) = +∞
for some T ∈ R \ 0) (Hint: Observe that, for a solution which is constant in x, the above
equation becomes a second order ODE in terms of t).

(d) In the case n ⩾ 3, show that, for any ϵ > 0, there exist compactly supported initial data
(ψ0, ψ1) with ∥ψ0∥H1 + ∥ψ1∥L2 < ϵ which blow up in �nite time. As a result, small initial
energy is not enough to guarantee that (1) has a solution which exists globally in time;
this is related to the fact that (1) is supercritical with respect to the energy norm. (Hint:
Consider the initial data from part (c) and cut them o� in a ball of suitable radius, using
the domain of dependence property to deduce the behaviour of the solution on the domain
of dependence of that ball.)

Remark. In the case where n = 3 (that is, the physical space dimension), it was shown by
Fritz John that every smooth and compactly supported initial data set (ψ0, ψ1) for (1) that
doesn't vanish identically gives rise to a solution that blows up in �nite time.

12.2 In this exercise, we will establish Hardy's inequality. Like Poincare's inequality, this inequality
is used to control lower order norms of a function f in terms of norms of higher derivatives,
albeit in unbounded domains.

(a) Let f : [0,+∞) → R be a C1 function. Show that, for any a > −1, there exists a constant
Ca > 0 depending only on a such that

� +∞

0

xa|f |2 dx ⩽ Ca

( � +∞

0

xa+2|f ′|2 dx+ lim sup
x→+∞

(xa+1|f |2(x))
)
.
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In particular, if f is compactly supported, we have

� +∞

0

xa|f |2 dx ⩽ Ca

� +∞

0

xa+2|f ′|2 dx.

(Hint: Starting from the left hand side, write xa = d
dx

(
1

a+1
xa+1

)
and integrate by parts;

you might want to use a Cauchy�Schwarz inequality at some point.)

(b) Let f : Rn → R be a C1 function. Show that, for any a > −n, there exists a constant
Ca,n > 0 depending only on a, n such that

�
Rn

|x|a|f |2 dx ⩽ Ca,n

(�
Rn

|x|a+2|∇f |2 dx+ lim sup
R→+∞

�
|x|=R

Ra+1|f |2 dσ
)
.

(Hint: Use polar coordinates.

(c) Let ψ be a smooth solution of the wave equation

□ηψ = 0

on (Rn, η), n ⩾ 3, with smooth and compactly supported initial data (ψ0, ψ1) at t = 0.
Show that

sup
T∈R

�
t=T

1

|x|2
|ψ|2 dx ⩽ CE [ψ](0) < +∞

for some constant C > 0 depending only on the dimension n, where E[ψ](0) is the initial
energy of ψ. Compare the above bound with Exercise 10.2.b.

12.3 In this exercise, we will show that solutions of the standard wave equation on Minkowski space-
time decay polynomially fast towards timelike in�nity. We will restrict ourselves to (R3+1, η),
even though similar arguments can be applied to the case of Rn+1 for any n ⩾ 3. In what
follows, we will denote with ϕ a given solution of

□ηϕ = 0

on R3+1 emanating from smooth and compactly supported initial data at t = 0. We will denote
by r = |x| the usual spatial radius function, and by

u = t− r, v = t+ r

the usual double null coordinate functions.

(a) Show that, in the polar coordinates (t, r, ω) on R
3+1 \ {r = 0} ≃ R × (0,+∞) × S

2, the
wave equation can be reexpressed in terms of rϕ as

−∂2t (rϕ) + ∂2r (rϕ) +
1

r2
∆S2(rϕ) = 0,
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where δS2 is the usual Laplace�Beltrami operator on the unit sphere (S2, gS2); in the
standard (θ, φ) coordinates on S2, it takes the form

∆S2f =
1

sin θ
∂θ
(
sin θ∂θf

)
+

1

sin2 θ
∂2φf.

In the (u, v, ω) coordinate system, we have

−4∂u∂v(rϕ) +
1

r2
∆S2(rϕ) = 0. (2)

(b) Let us now switch to the (u, v, ω) coordinate system. Show the following energy bounds
along the leaves of the foliation {u = const}: For any 0 ⩽ τ1 ⩽ τ2,�

u=τ2

(
4|∂v(rϕ)|2 +

1

r2
|∇ω(rϕ)|2g

S2

)
dvdω ⩽

�
u=τ1

(
4|∂v(rϕ)|2 +

1

r2
|∇ω(rϕ)|2g

S2

)
dvdω (3)

and�
u=τ1

(
4|∂v(rϕ)|2+

1

r2
|∇ω(rϕ)|2g

S2

)
dvdω ⩽

�
t=0

(
|∂t(rϕ)|2+|∂r(rϕ)|2+

1

r2
|∇ω(rϕ)|2g

S2

)
drdω,

where |∇ω(rϕ)|2g
S2

denotes the norm of the spherical gradient, evaluated with respect to
the unit metric on the sphere, while dω denotes the associated volume form on the unit
sphere. The above is of course nothing more than the usual energy inequality, applied to
domains bounded by the null cones.

(Hint: Multiply (2) with ∂t(rϕ) = (∂u + ∂v)(rϕ) and integrate by parts over appropriate
domains with respect to the volume form dudvdω. Note that you might have to truncate
your domains by intersecting with {v ⩽ V } and sending V → +∞.)

(c) For any p ∈ [0, 2], using rp∂v(rϕ) as a multiplier for (2), show that, for any 0 ⩽ τ1 ⩽ τ2:�
u=τ2

rp|∂v(rϕ)|2 dvdω +

�
τ1⩽u⩽τ2

rp−1
(
|∂v(rϕ)|2 + r−2|∇ω(rϕ)|2g

S2

)
dudvdω (4)

⩽
�
u=τ2

rp|∂v(rϕ)|2 dvdω.

and �
u=0

rp|∂v(rϕ)|2 dvdω ⩽ C

�
t=0

rp
(
|∂v(rϕ)|2 + r−2|∇ω(rϕ)|2g

S2

)
drdω

for some absolute constant C > 0 (i.e. independent of ϕ).

(d) Show that if f : [0,+∞) → [0,+∞) is a continuous function satisfying
� +∞

0

f(t) dt ⩽ C

then there exists a sequence of points tn → +∞ with tn+1 ∈ [2tn, 4tn] (we will call such a
sequence dyadic) such that

f(tn) ⩽
10C

tn
.
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*(e) Starting from (4) for p = 2 and using part (c), show that there exists a dyadic sequence
τn and some absolute constant C > 0, such that

�
u=τn

r|∂v(rϕ)|2 dvdω ⩽
C

τn

�
t=0

r2
(
|∂v(rϕ)|2 + r−2|∇ω(rϕ)|2g

S2

)
drdω.

Applying again (4) but this time for p = 1 on the intervals {τn ⩽ u ⩽ τn+1, show that, for
some τ ′n ∈ [τn, τn+1]:

�
u=τ ′n

(|∂v(rϕ)|2 + r−2|∇ω(rϕ)|2g
S2

)
dvdω ⩽

C ′

τ 2n

�
t=0

r2
(
|∂v(rϕ)|2 + r−2|∇ω(rϕ)|2g

S2

)
drdω

for some absolute constant C ′ > 0.

(f) Using the energy bound (3), deduce that, for any τ ⩾ 0:

�
u=τ

(|∂v(rϕ)|2 + r−2|∇ω(rϕ)|2g
S2

)
dvdω ⩽

C ′′

τ 2

�
t=0

r2
(
|∂v(rϕ)|2 + r−2|∇ω(rϕ)|2g

S2

)
drdω

for some absolute constant C ′′ > 0. In particular, the energy �ux through the cones
{u = τ} decays like τ−2 as τ → +∞.

*(g) By commuting the wave equation with Cartesian derivatives, deduce an analogous decay
estimate for higher order energy �uxes of ϕ. Applying the Sobolev inequality, deduce that

ϕ(u, v, ω) ≲ u−1 and rϕ(u, v, ω) ≲ u−
1
2 ,

with the constant implicit in the ≲ notation depending only on the initial data at t = 0.
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